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i. We consider the nonlinear problem of small oscillations of a viscous, heat-conducting 
liquid in an unbounded region D under thermocapillary forces generated by nonequilibrium 
heating of the free boundary F. We consider the limit of small viscosity (v § 0) and small 
thermal diffusivity (X * 0). The equations of the problem are 

0V/0t -~- (V, V)V = - - p - l v p  -~- vAV -~- g, 
OT/Ot + v v T  ----- xAT, div v = 0; 

2vpHn - -  2vp(nrln)n = Vra ,  T = Tr, (x, y, z) ~ F, 

p --  2vpnlIn + ~ (k 1 + k2) + p,, OF/Ot + v v F  = 0, (x, y, z) ~ F~ 

(i.l) 

( 1 . 2 )  

Here v = (Vx, Vy, Vz); T is the temperature g = -gez; e: = (0, 0, i) is a unit vector along the 
z axis; g is the acceleration of gravity; n is the outward unit normal to the free surface F; 

is the deformation rate tensor; ki, k= are the principal curvatures of the surface F; p, = 
const is the pressure on F; Vr = V--(nv)n is the gradient along F; F(t, x, y, z) = 0 is 
the equation of the free surface in implict form; the surface tension o is assumed to be a 
linear function of temperature o = ~ + OT (T - T,) (a 0, ~T, T, are known constants and G T < 
0). The velocity field and temperature gradient vanish at infinity. Initial conditions are 
not specified, since the solutions will be constructed in the form of free oscillations. 

A nonlinear boundary layer is formed near the free surface in the limit of zero viscosity 
and zero thermal conductivity. In the unbounded region outside the boundary layer the flow 
of the liquid is described approximately by Euier's equations. Nonlinear Marangoni boundary 
layers near a free surface formed as a result of the thermocapillary effect were studied in 
[i-4]. An asymptotic expansion in the limit v § 0 was obtained in [5] for the steady flow 
of an incompressible fluid subject to nonequilibrium heating of the free surface. 

Formal asymptotic expansions of the solution of the problem (i.i), (1o2) in the limit 
v, • + 0 will be constructed below. The problem is Converted to dimensionless form with the 
small parameter s = M I/a (M = I~TIL~Ag-iV -2 is the Marangoni number and L and A are the cha- 
racteristic scales of length and temperature gradient). We note that small s corresponds to 
small v or large temperature gradient. The dimensionless pressure p' is defined by the rela- 

P ' - pgz (P = AIOTI is the scale of pressure). The typical velocity U = (OT2A2Lv -i. tion 
ll3=in the ~ Lp layer near 9-2) boundary the free surface is used as the scale of velocity. The 

quantity (L/g) I/2 is used as the scale of time. The asymptotic expansion of the solution of 
(i.i), (1.2) is constructed in the form 

v N ho -b ~1/2(vl + hi) q- .... P' ~" qo + Po + ~(Pl -~- ql) j2_ .... 
T -~ Oo + To + O(~'/D, ~ N ~o + ~ / ~  + .... (i.B) 

where z = ~ (x, y, t) is the equation of the free surface. Let D F denote the boundary layer. 
Then hk, qk, 0 o are solutions of the boundary-layer problem in D F and vz, P0, Pl, To define 
the solution outside D F. The orders of magnitude of the leading terms in the expansions 
(1.3) are found by assuming that the viscous and inertial terms in the Navier-Stokes equa- 
tions and in the boundary conditions for the tangential stresses are of the same order of 
magnitude. Then the thickness of the boundary layer is of order ~. 

Note. The asymptotic solution of (I.i), (1.2) was constructed in [6] in the linear 
case where the temperature dependence is not taken into account and the tangential stress on 
F is given. In both the linear and nonlinear problems, when the surface tangential stress 
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is finite (Vr~  = 0 ( 1 )  in the limit v § 0) the velocity of the liquid in the boundary layer 
near the free surface is an order of magnitude larger than in the outer flow [see Eq. (1.3)]. 
Inclusion of the nonlinearity changes the thickness.of the boundary layer 6p: in the linear 
case 6p ~ v I/~, while in the nonlinear case 6p - v 2/a. 

2. A boundary-value problem for the leading terms of the asymptotic expansion (1.3) 
determining the flow in the boundary layer D F is obtained by a second to (i.i), (1.2) using 
the Vishik-Lyusternik method [7]. Near the free surface we introduce the moving local ortho- 
gonal coordinates $, ~, 8 (~ is the distance between the point M and the surface r and g and 
8 are the curvilinear coordinates of the projection of M onto F). The surfaces ~ = c~(0, 

= c=(t) form two families of orthogonal surfaces chosen so that their lines of intersec- 
tion with F are lines of principal curvature. It is assumed that for sufficiently small 
the segments normal to F do not intersect Dne another. The transformation from Cartesian to 
moving local coordinates is given by 

r = R(t ,  % O ) -  ~n(t, % 0), 

where r = (x, y, z); R = (X, Y, Z). We note that r =R(t, ~, @) is the parametric equation 
of the surface F, which deforms in time. The local coordinate system moves with the surface 
r. 

The equations (i.i) and the boundary conditions (1.2) are transformed to the moving 
coordinates. We introduce the "fast" time tz associated with the small viscosity t z = t/~ 
and use the fact that the functions hk, qk depend on two different time scales: t and tl. 
An expression for the pressure inside the boundary layer is obtained by applying the Vishik- 
Lyusternik method to (i.i): 

qo = - -  kl h ods - -  k~ h?jods T- otoo o),. hoo ds. 
8 S $ 

Here H~ and H@ are the Lame coefficients of the surface F; ~z and ~2 are given by 

) 'co eo '1 
~ = kzHm \ot  ~ -  ~=o ' ~~ = k~-Ho (~-[', -- ot ~=o/" 

( 2 . 1 )  

We assume that F oscillates about the stationary surface F c with an amplitude of order 
g and a velocity O(g). Then O@at, ao/at, at/at are of order E and to O(e) (2.1) becomes 

oo c~ 

qo = - -  lq J' h~ods - -  k.,_ S h~ods. ( 2 . 2  ) 
8 8 

Taking the coordinate ~ to be the arc length along the free surface, the boundary-layer equa- 
tions for the plane problem are 

Ohcn ahq: o ah,~ o 02h, q;o c)h~ o OH~-~ 
§ H~2 ~ + h~o ...... + ~ =0, 

Ot 1' " 8~ os z ' ?g  k s  

Ohr o ~ ( t ,  ~) H~o = O (s = O), 
8s 8 T ' " 

h~o = h ~  = 0 (s = oo),  H~: = h~: -F v:nIr .  

(2.3) 

Here s = ~/~ is the dilated variable, h~0 and h~2 are the longitudinal and transverse compo- 
nents of the velocity vector inside the boundary layer, and hg0 = O. 

Since the surface tension o depends only on ~ and the slow time t, which is independent 
of the viscosity, we consider solutions of (2.3) which are independent of the fast time tz, 
i.e., we assume h~o = h~o(S, ~, t)/. It was shown in [4] that the boundary-value problem ob- 
tained from (2.3) with 6h~o/at t = 0 and with t as a parameter has a unique solution. Hence the 
vector function h0(s, ~,t) determines the velocity field in the quasisteady boundary layer. 

3. The functions vl z, P0, g0 determining the inviscid flow outside the boundary layer 
and the asymptotic form of the free surface are obtained by a first iteration [7] to (i.i), 
(1.2). Let F 0 be the free surface of the inviscid flow. Near F 0 we introduce the moving 
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local orthogonal coordinates ~i, 91, 0t ($i is the distance to r0). The principal curvatures 
of the surface F are written in series form ki = ki o + sl/2kil + ... (i----I; 2) (ki0 are the prin- 
cipal curvatures of the surface F0). Substituting the expansion (1.3) into (i.i), (1.2), 
using the fact that h 0 = h I = q0 = ql- 00 = 0 outside the boundary layer and equating the 
coefficients of s o , and g to zero, we obtain the following boundary-value problem for vl, P0, 
~0 in dimensional form 

~v 1 
a-T + (vl '  V) v~ = - -  9-IVpl, div v I = O, 

Po = Pg~o + ~ (klo -~- k2o) -~- qo ]s=o ~- P , ,  ( I ,  g, z) ~ Po, ( 3 . 1 )  

a~~ ~ ~ (z = G). 0--7 + V~o + vvo = V~o 

As before, initial conditions are not specified for (3.1), since we will be interested 
only in the small oscillations defined by (3.1). 

Tangential stress on the free surface of a low-viscosity liquid therefore leads to the 
additional term q0 [see Eq. (2.2)] in the dynamical boundary condition of (3.1) for limiting 
inviscid flow. This term depends on the velocity field in the boundary layer, the principal 
curvatures, and the tangential loads. 

4. We consider small oscillations about a steady solution. The steady motion of a 
liquid under nonequilibrium heating of its free surface at large Marangoni numbers has been 
considered in [5]. The equation for the free surface is 

oo oo 

0 0 
(4.1) 

The equations of motion for small oscillations in the case of unsteady heating are ob- 
tained by linearizing the boundary-value problem (3.1). The equation for the free surface 
is obtained by linearizing about the surface (4.1). Examples were given in [5] of the calcu- 
lation of the free surface F c using (4.1). Let F t be the time-dependent surface close to F c 
and let N be the distance along the normal to F c. Then in local coordinates N = N(9, 0, t) 
is the equation of F t (9, 0 parametrizes the surface F c at time t). We linearize the dynam- 
ical boundary condition in (3.1) using the relations between the curvatures and arc lengths 
along the principal directions for the close surface [8]. Because of its complexity, the 
problem of small oscillations near a three-dimensional curved surface (4.1) is not considered 
here. We assume that the external inviscid flow is irrotational. Then defining the velocity 
potential ~ by the equation vl = V ~ we find from (3.1) that �9 satisfies Laplace's equa- 
tion and the pressure Py is easily eliminated from (3.1). The boundary-value problem describ- 
ing the small oscillations of the liquid near a plane surface F c can be written in the dimen- 
sional form 

A O  = O, 
oo oo 

aO_pgN_}_oAN + ~ h~ods + - -  hgods=O (z=O), 
- -  p --~ Ox----T. Oya 

0 0 

8(O ON 
o,~ ot (z = 0), Vq~ = 0 ( z  2 + v ~ + z 2 = oo) .  

(4.2) 

We consider the plane problem for the oscillations of the liquid near a horizontal sur- 
face (z = 0) for nonequilibrium heating given by T = T, + ALf(x, t), where f(x, t) is the 
dimensionless temperature. The surface tension is then o = % (i - Xf(x, t)), where X = 
IOTIAL/o0 ~ 0. Considering o to be positive, we assume that for certain t the coefficient o 
can vanish at the point of maximum temperature. This leads to the condition O~L~(max[l-~ 

\ x , t  ) 

The following relation is analogous to a relation given in [5] and is valid in the case con- 
sidered here: 

0 O 
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(/0 = hr the velocity profile at x = x0). Then the dynamical boundary condition of 
(4.2) can be written in the plane case as 

a(D 02 
p - ~  -t- og~o - ~o (1 + xl (Xo, t) - 2z / (x ,  t)) ~ = O. (4.3) 

Here we have taken the origin of the coordinate system at the point of maximum temperature 
where f0 = 0. The latter relation is easily proven, since near the maximum a self-similar 
solution for the Marangoni boundary layer can be constructed [2]. 

We further assume that the free surface is heated locally and therefore f can be written 
as f = f(x/6, t)(6 ~ I is a small parameter). Using (4.3), we average (4.2) over the x coor- 
dinate [9]. We introduce the slow variable x I = x/6 and expand the functions �9 and ~0 in power 
series in the parameter 6. The leading terms of the asymptotic expansions satisfy (4.2), in 
which the dynamical boundary condition is replaced by 

a~ , 0%0 = O, 
P 7 F  - -  '~176 - -  ao ( t  + )~/c (t)) a.~- 

where fc = f(0, t) is the temperature at the maximum. Note that this last equation is also 
obtained when the temperature of the free surface is a delta function. Note also that the 
boundary-layer equations have the exact solution hx0 = 8k2x-Z/3ch-2(ktsx -I/~) (k t is a parameter) t 

Assuming that the liquid occupies the half space z~ ~(x, t), x~ (--~, ~), the solution 
can be found explicitly 

(I) = B ' ( t )  exp  (kz) cos (kx), ~o = kB( t )  cos (kx).  

The oscillation amplitude satisfies the equation 

B" § [gk § k~%p1(1 + ~/o(t))]B = 0 (4.4) 

( k  is the wave number). 

Assuming that the heating of the free surface does not depend on time (fc 
describes harmonic oscillations B = B0exp(imt) with frequency 

= V gk § k~o( ~ + z)~ -~. 

i), (4.4) 

In this case the thermocapillary effect leads to an increase in the oscillation frequency. 

If the temperature of the free surface increases linearly with time fc = 1 + bt, then 
the solution can be expressed in terms of the Bessel functions JL/3, YI/3: 

[ (+) (2)I 
B = 1 /~  clj1/3 x 3/~ ~ c2Y1/3 - $ - r  3/2 , 

The thermocapillary effect in this case leads to damping of the small oscillations. 

We consider small oscillations for the case of local heating with periodically varying 
temperature fc = a - b cos(2St), where I bl < a. Then (4.4) reduces to the well-known Mathieu 
equation, for which the stable and unstable regions are well known [I0]. In this case the 
oscillation amplitude can diverge, damp out, or oscillate periodically in time, depending on 
the values of the parameters. We not that the oscillations always increase for b ~ 0 and 

> 0 satisfying the relation pgk ~ ~akS~ = pQ2m2 (m = i, 2, 3 .... ). 

5. We consider the small oscillations of a liquid in a cylindrical container of infinite 
depth subject to harmonic heating of the free surface. The surface tension is given by o = 
%(I --%/(x)), /(x) = cos (xx/l) (O~x~ Zl),~ where 0 ~ ~ < i. When I = 1 the surface tension o 
vanishes at x = 0 and x = 2~. Let 2s and 2L be the lengths of the sides of the container 
along the x and y axes. Then the temperature reaches a maximum along the line of contact of 
the free surface and solid boundary. The problem of small oscillations reduces to Laplace's 
equation for the potential~ with the following boundary conditions on the unperturbed hori- 
zontal surface Fc: 
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~o/OJc 

0,8 

o,4 

0 0,4 0,8 a 

F i g .  1 

- -  P - '~  - -  Pg~o + ao (t  + ~,F (x)) ~ -}- a o (t  - -  ;L/(x)) ----- O, 

a___~ = --a;~ (z = 0), F = ! --  2/(x). 
O~. Ot 

On the solid walls we have the nonpenetration conditions 

aO 
a---~=Oaz ( x = O , x = 2 l ) , - ~ = O  ( y = O , b , = 2 L ) .  

The solution is written in Fourier series form 

(D cos~L y f~  Amexp(k~,~z)  nrnx ----- r COS tot, 
m=l 

~ km,n A ~mx . --_  o--COS  - v  ' ; nl" \ - Z !  + \ ~ - )  ' 
' m . = l  

n=O,l ,2 . . . .  
5.1) 

The case n = 0 corresponds to oscillations in a channel with walls parallel to the y axls. 

In the absence of the temperature gradient (% = 0) the natural frequencies can be found 
explicitly: 

V ' G O m,n/P. O~ ~- (Oc ~ gkm,n -C" ka 

In the general case the oscillation frequencies satisfy a transcendental equation and 
can be computed numerically when % > 0. By retaining the first four harmonics in the Fourier 
series we calculated the frequencies w to three significant figures. The first few natural 
frequencies normalized to ~c are shown in Fig. I as functions of the temperature amplitude % 
for n = 1 and ~ = L. Curves i-5 correspond to Bond numbers Bo = pg~2/o 0 equal to i0, I, 0, 
-I, -1.8. For fixed Bond number the oscillation frequencies decrease monotonically with in- 
creasing temperature. The case Bo = 0 corresponds to zero gravity. As Bo increases the fre- 
quencies increase at fixed % and ~ + mc when Bo § =. 

The oscillation frequencies were also calculated in the case f(x) = cos (~x/~), -~ < x ~ ~, 
i.e., when the temperature reaches a minimum value on the lines of contact x = • of the free 
surface and solid boundary. Now the natural frequencies increase monotonically with increas- 
ing temperature amplitude and decrease monotonically with increasing Bo. Heating of the free 
surface increases the value of ~. 

The oscillation frequencies in a rectangular container when the heating of the free sur- 
face is a given by a delta function f(x) = %6(x) + ~5(~ - x) (0 S r ~ ~) are given by 

[ ()~ ( = m l  ~  ( I  + - ~ . .  �9 ~ = g k ~ . ~  l + \ - S f  I -~  ~L- - ~ ,  re, n = 1 , 2 , 3 , .  (5 2) 

The coefficient km, n is given in (5.1). The case % = 0 corresponds to zero temperature gradi- 
ent. An increase in the heating % > 0 increases the natural frequencies. For heating accord- 
ing to the equation f(x) = X6(x - ~/2) the coefficient ~ in (5.2) is replaced by -%. Then 
an increase in the heating decreases the oscillation frequencies. 
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